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Exploring structural determinants of specific biological activ-
ities of small molecules is generally of high interest in

medicinal chemistry. Such investigations can be carried out at
different levels, for example, by analyzing chemical neighborhood
behavior,1 studying compound series following the classical
quantitative structure�activity relationship (QSAR) paradigm,2

or exploring different types of activity landscape models3 includ-
ing conventional single-target3,4 and selectivity landscapes4 or
multitarget activity landscape representations.5 Statistical surveys
of substituents that affect compound potency have also been
reported.6,7 Typically, such studies require the application of a
canonical definition of molecular frameworks and substituents,
for which several alternatives exist. Another way to generalize
chemical modifications in a consistentmanner is the utilization of
the matched molecules pair (MMP) formalism.8 An MMP is
defined as a pair of compounds that are distinguished from each
other only at a single site (such as an R group or ring system) or,
in other words, that are related by a specific chemical “transfor-
mation”, that is, the exchange of one group with another. In the
context of MMP analysis, the term transformation is utilized to
generalize chemical changes but not to refer to reaction informa-
tion. Hence, chemical changes in MMPs are algorithmically
defined and generalized, as further explained below, but they
are not as the result of specific chemical reactions.

The MMP concept has recently been applied to a number of
medicinal chemistry or drug discovery relevant questions. For
example, MMPs have been systematically generated and ana-
lyzed for bioactive compounds to identify substitutions that form

activity cliffs across different compound classes.9 Furthermore,
MMPs have been utilized to compare compounds with primary
target and antitarget annotations to predict chemical changes
that might affect antitarget activity.10 In addition, the way in
which physicochemical parameters of compounds change as a
consequence of MMP transformations has been investigated.10

To support such data mining and prediction efforts, an efficient
algorithm has been introduced to generate MMPs on a large
scale,11 as discussed in the Experimental Procedures.

The major goal of our study has been to analyze whether
chemical transformations exist that produce compounds with
distinct (nonoverlapping) activity profiles. Therefore, on the
basis of currently available public domain data, we have first
generated activity profiles for all qualifying compounds and then,
utilizing the MMP formalism, systematically searched for chemical
transformations that met our activity profile criteria. Methodolo-
gical details are provided in the Experimental Procedures.

Our approach is outlined in Figure 1. For preselected com-
pounds (see the Experimental Procedures), activity profiles were
generated by assembling all available target annotations. Then, all
unique activity profiles were determined, and compounds dis-
playing these activity profiles were collected. In the next step, all
possible profile pairs were assembled. Pairs formed between
single targets were removed, and the remaining profile pairs were
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KEYWORDS: Active compounds, target annotations, activity profiles, profile analysis, matched molecular pairs, chemical
transformations



524 dx.doi.org/10.1021/ml2000609 |ACS Med. Chem. Lett. 2011, 2, 523–527

ACS Medicinal Chemistry Letters LETTER

classified as pairs consisting of distinct or overlapping profiles.
Then, all compound pairs representing distinct or overlapping
profile pairs were identified. From these compound pairs,
MMPs were systematically generated, and transformations
were determined.

The results of this analysis are summarized in Figure 2. We
identified 41801 compounds that were active against a total of
754 different target proteins with at least 10 μM potency. These
compounds had 1778 unique activity profiles. From these
profiles, we then enumerated all possible profiles pairs, yielding
∼1.5 million pairs. More than 1.4 million of these consisted of
distinct activity profiles, whereas only ∼37000 pairs contained
overlapping profiles, that is, activity profiles that had at least one
target in common. Then, all possible compound pairs were
assigned to distinct and overlapping profile pairs. From these
compound pairs, all possible MMPs were generated, and from
these MMPs, chemical transformations were systematically ex-
tracted. Importantly, a single MMP might yield several over-
lapping transformations. A total of 37527 MMPs with distinct
activity profiles were obtained yielding 80592 transformations. A
much larger number of 82635 MMPs with overlapping activity
profiles was obtained, yielding 510046 transformations. It should
be noted that the same transformation might in principle be

encoded by MMP(s) with distinct or overlapping activity pro-
files, although this might not be very likely. Therefore, we also
determined the overlap between transformations defined by
MMPs with distinct and overlapping activity profiles. However,
the overlap between these sets of transformations was very small,
with only 2126 shared transformations. These transformations
were omitted from further consideration.

The remaining transformations derived from MMPs with
distinct activity profiles were filtered using a three-step proce-
dure. First, only transformations represented by multiple MMPs
were selected. Second, when different transformations were
obtained from identical MMP sets, only the one containing the
smallest number of heavy atoms was retained. Third, transforma-
tions were omitted whose MMP set was a subset of another
transformation. Criterion one was applied to focus the analysis
on frequent transformations, whereas criteria two and three were
applied to remove redundant transformation information. After
filtering, a total of 344 transformations remained that intercon-
verted compounds with distinct activity profiles. As a control, we
also repeated the analysis with transformations obtained from
MMPs with overlapping activity profiles. A total of 3256 control
transformations were obtained. There was no overlap between
this set and our 344 transformations derived from MMPs with
distinct activity profiles.

These 344 transformations were then ranked according to the
number of MMPs from which they were obtained, the number of
activity profiles that they converted, and the total number of
targets involved in these activity profiles. From these indepen-
dent rankings, a rank fusion was calculated to further prioritize
transformations according to the smallest sum of ranks. This
standard rank fusion approach adds individual ranking positions
from different lists and prioritizes compounds that are overall
most highly ranked; that is, a consensus ranking is obtained by
calculating the sum of ranks and ordering compounds according
to increasing rank sum.

Figure 3 shows the top 10 transformations yielding com-
pounds with distinct activity profiles. The final ranking was
obtained on the basis of the rank fusion procedure described

Figure 1. Methodological summary. An outline of the approach to
identify activity profile-switching chemical transformations is presented.
In the first step, an activity profile was generated for each compound
from reported target annotations. In the second step, all unique activity
profiles were determined, and compounds were organized according to
their activity profiles. In the third step, all possible profile pairs were
generated and classified as “overlapping” profile pairs (i.e., consisting of
activity profiles that had at least one target in common) or “distinct”
profile pairs (i.e., consisting of profiles that did not have any target in
common). In the fourth step, all compound pairs “corresponding” to
distinct or overlapping profile pairs were identified (i.e., for each profile
pair, all pairs of compounds were systematically generated that formed
this profile pair). For example, compounds 1 and 4 display activity
profile AB, and compound 3 displays profile DEF. Thus, two compound
pairs can be generated in this case, 1-3 and 4-3, which “correspond” to
the distinct profile pair AB-DEF. In the fifth step, MMPs were system-
atically generated from all compound pairs, and transformations were
determined for each activity profile pair.

Figure 2. Statistical analysis. Shown is a flowchart summarizing the profile,
compound, MMP, and transformation statistics at different stages of our
analysis. Three rules (1�3) are applied to filter transformations, as
described in the text.
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above. All 344 transformations are provided in Table S1 in the
Supporting Information. All transformations in Figure 3 are
represented by two or three MMPs and two or three activity
profile pairs. The activity profiles contain between seven and 15
different targets. In some cases, the targets constituting an
activity profile pair are closely related; in others, they belong to
different protein families. The majority of targets are different G
protein receptors (GPCRs), tyrosine or serine/threonine ki-
nases, and proteases. The top 10 transformations in Figure 3
mirror the overall distribution of transformations in Table S1.
Seven of 10 prioritized transformations (rank 2�5 and 8�10 in

Figure 3) involve the exchange of substituted aromatic and/or
aliphatic ring systems of varying complexity. For all transforma-
tions provided in Table S1 in the Supporting Information, such
ring-to-ring transformations are also most frequently observed.
The three remaining transformations in Figure 3 involve the
exchange of a functional group or aliphatic substituent with a ring
(rank 1 and 6) or the introduction of an aliphatic substituent
(rank 7). These types of transformations are also much less
frequently observed in Table S1 in the Supporting Information.
Thus, transformations that yield compounds with distinct activ-
ity profiles rarely involve conventional R group replacements.

Figure 3. Prioritized transformations. Shown are the 10 top-ranked chemical transformations (rank 1�10) that yield compounds with distinct activity
profiles. These final rankings were obtained after rank fusion, as described in the text. In each case, the exchanged fragments (red) are shown together
with twoMMPs that provide the structural context of the transformation. For each transformation, the number of MMPs, activity profile pairs, and total
number of targets involved in these profile pairs are reported. In addition, activity profile targets are defined for each MMP. Target abbreviations: CA,
carbonic anhydrase; VEGFR, vascular endothelial growth factor receptor protein-tyrosine kinase; FLT3, FMS-like tyrosine kinase 3; FGFR, fibroblast
growth factor receptor protein-tyrosine kinase; CDK, cyclin-dependent kinase; ADR, adenosine receptor; 5HT, serotonin receptor; PDGFR, platelet-
derived growth factor receptor protein-tyrosine kinase; PKC, protein kinase C; PDK, 3-phosphoinositide-dependent protein kinase; MAMP, matrix
metalloproteinase; TNF-R, tumor necrosis factor R; ADAM17, disintegrin and metalloproteinase domain-containing protein 17; MAPKK1, dual
specificity mitogen-activated protein kinase kinase 1; Chk2, checkpoint kinase 2; and UFO, tyrosine-protein kinase receptor with unidentified protein
function.
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It follows that these results could not have been obtained by
conventional R group decomposition or scaffold/R group anal-
ysis. These findings have implications for compound design, as
further discussed in the following. The prevalence of ring-based
transformations suggests that defined changes in core structures,
which might often represent characteristic binding motifs for
given targets, lead to distinct activity profiles, rather than
differences in substitution patterns. For example, this is apparent
for transformations that change compound activity from tyrosine
kinase inhibitors to adenosine receptor ligands (rank 2), from
serotonin to dopamine receptor ligands (rank 3), or from
receptor tyrosine kinase to serine/threonine kinase inhibitors
(rank 5). Thus, partial replacements of core ring structures in
active compounds would represent a preferred compound design
strategy to facilitate activity profile switches.

In summary, through systematic compound data mining, we
have demonstrated that chemical transformations exist that
generate compounds with distinct biological activity profiles,
which comprise all target annotations of a compound with
potency values higher than a threshold value. We have identified
more than 300 MMP transformations that convert compounds
with distinct profiles consisting of multiple targets into each
other. Our analysis was designed to be compound- rather than
compound class-centric. Accordingly, the MMP concept was
applied to represent transformations because it generalizes them
in a consistent manner and does not require the organization of
molecules into scaffolds and R groups or the inclusion of
synthetic criteria. On this basis, we have been able to determine
that partial replacements of core ring structures most frequently
yield compounds with distinct activity profiles, a finding that was
not anticipated. Despite general compound data sparseness,
more than 300 transformations have been identified that were
present in more than one MMP and triggered switches between
multiple distinct activity profiles. As more activity measurements
become available, additional transformations will likely be iden-
tified, and some of the transformations reported herein will
probably be observed at higher frequencies, thus providing a
further improved basis for the use of activity profile-switching
chemical transformations in compound design. Clearly, not all
transformations might be equally amenable to compound design
because they are derived on the basis of the MMP concept that
generalizes chemical changes without including synthetic or
pharmacophore information. The top-ranked transformations
in Figure 3 mostly describe exchanges of ring systems that
generate compounds with distinct activity profiles. Thus, ring
systems that are indicated by MMP analysis to be a signature of
an activity profile involving members of a particular target family
might be incorporated in compounds directed at these targets to
achieve target selectivity. Prime examples for such design efforts
would be the ring systems involving the third and fourth ranked
transformations in Figure 3 that switch compound activity
between different GPCRs or GPCRs and transporters.

’EXPERIMENTAL PROCEDURES

From BindingDB12 and ChEMBL,13 compounds active against multi-
ple human targets with at least 10 μM potency were extracted.
Compounds were represented as 2D molecular graphs. Only com-
pounds with unique 2D graphs were included in the analysis, and in
relevant cases, tautomeric states were utilized as indicated in the original
compound records. Only Ki and IC50 values were considered as potency
measurements. Because it was not necessary to compare different types

of potency values for the generation of activity profiles, the consideration
of both Ki and IC50 was appropriate in this case. For compounds with
multiple potency measurements against the same target, the geometric
mean was calculated as the final potency value. For the generation of
activity profiles, the major criterion has been to set a lower threshold for
target potency (i.e., 10 μM) such that weakly potent compounds were
excluded from activity profile generation. Most of the BindingDB and
ChEMBLcompounds subjected to our analysis are active in the nanomolar
range. The potency distribution is reported in Figure S1 of the Supporting
Information. For the activity profiles that we have generated here, absolute
potency values were not relevant, because they were built on the basis of
target annotations. For all qualifying compounds, activity profiles were
generated and compared. An activity profile consisted of all target anno-
tations reported for a compound. MMPs were generated using an adapta-
tion9 of theHussain andRea algorithm.11Our analysis was carried outwith
in-house generated Perl, Java, and Pipeline Pilot14 programs.

To generateMMPs using our implementation of the Hussain and Rea
algorithm, all selected compounds are initially fragmented as follows: All
nonring single bonds between two nonhydrogen atoms in a compound
are marked, which is followed by systematic deletion of these bonds,
producing so-called single cuts, and their two- and three-bond combina-
tions, that is, double cuts and triple cuts, respectively. A single cut results
in two fragments F1 and F2 that are added to an index list. Then, two
“key-value” pairs are built as follows: Fragment F1 is added as a “key” to
the index using F2 as the corresponding “value”, and the same is done for
F2 as the key, and F1 is the value. Double cuts produce a core and two
terminal fragments. Here, the core is used as the value and the
combination of the two terminal fragments as the key. Furthermore,
only those triple cuts are retained that result in a single core and three
terminal fragments. Here, the core is also stored as the value, and the
three terminal fragments together are stored as the key. Connectivity
information of all fragments is retained. Stereochemical criteria are
considered. For all generated key�value pairs, their origin is also stored,
that is, the source compound information. The pairwise combination of
all compounds sharing a particular key (and hence the corresponding
fragment) then yields MMPs, and the two value fragments define the
structural transformation for each of theseMMPs.We consider a combi-
nation of two compounds only as an MMP if the heavy (nonhydrogen)
atom counts of their distinguishing fragments differs by maximal eight
atoms such that compounds formingMMPs do not significantly differ in
size. Importantly, by utilizing single and multiple cuts, transformations
involving both R groups and core structures are obtained, thus general-
izing the transformation scheme. Hence, the algorithm is not limited to
R group exchanges and might yield multiple, differently sized fragments
that define transformations.
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